यदि $0 \leq x < \frac{\pi}{2}$ हे, तो $x$ के उन मानों की संख्या जिनके लिए $\sin x-\sin 2 x+\sin 3 x=0$ है

  • [JEE MAIN 2019]
  • A

    $2$

  • B

    $1$

  • C

    $3$

  • D

    $4$

Similar Questions

यदि $r\,\sin \theta  = 3,r = 4(1 + \sin \theta ),\,\,0 \le \theta  \le 2\pi ,$ तब $\theta  = $

निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए

$\cos 3 x+\cos x-\cos 2 x=0$

यदि $\sin 6\theta  + \sin 4\theta  + \sin 2\theta  = 0,$ तो $\theta  = $

यदि $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$, तब $\sin \left( {\theta  + \frac{\pi }{4}} \right)$ का मान होगा  

$2\sqrt 3 \cos \theta  = \tan \theta $ का व्यापक मान होगा